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Abstract
 An algorithm was developed for beam envelope

matching with fixed geometry, taking into account the full
order behavior of the quadrupoles and their compounded
effects. In the present approach an algorithm was
employed to systematically reduce the overall
dimensionality of the problem.  This resulted in two
algebraic systems that are independent but can be solved
in tandem.  At the numerical level these 2 reduced
systems are input to an equation solver in Mathematica
4.0 based on Gröbner-basis techniques, capable of
providing global solutions to such algebraic systems. This
has resulted in a robust and effective algorithm for on-line
optical beam envelope matching. The global nature of the
algorithm also may point to possible deficiencies in the
optical system configuration. An on-line high precision
transfer matrix measurement program was developed in
conjunction to provide input to this algorithm.
Preliminary on-line testing on the CEBAF accelerator has
positively demonstrated the effectiveness of this method.

1  INTRODUCTION
Exact global solutions to thick quadrupole lens

matching with fixed geometry can offer accelerator design
and control much more than is possible with local
methods. The algebraic structure of the problem is highly
complex.  Numerical methods, on the other hand, cannot
kick in too early before sufficient simplification has been
made on this structure to make the calculation viable at
all.  Of key importance is the ability to reduce the
dimensionality of the problem to the point where robust
and efficient numerical algorithms can be called upon to
obtain exact, global solutions.  An algorithm [1] has been
developed to systematically dimension-reduce similar but
simpler problems to the point where closed form algebraic
solutions can be obtained.  In the current case a similar
algorithm was applied to reduce the apparent 4-
dimensional problem, for which robust numerical
solutions are not always guaranteed, to 2-dimensional
ones, significantly enhancing the possibility of robust and
efficient numerical solutions, including global ones.  In
this report the dimension reduction method and outcome,
the numerical tool for obtaining global solutions,
adaptation to realistic matching problems at CEBAF, and
preliminary experimental results are presented.

2  THE MATCHING SOLUTION

2.1  Formulating the problem
The 4-quadrupole matching problem can be formulated

as follows. In the absence of cross-plane coupling, the
overall transfer matrices in the two transverse planes, �x
and �y, must satisfy the following conditions
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where the indices 1 and 2 label the initial and end twiss
parameters.  These 2 transfer matrices in turn are each
formed by concatenating the 4 quadrupole matrices (K1 to
K4) and the matrices representing the 3 intervening
sections (A, B, C for X and E, F, G for Y) as follows:
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The problem is thus one of solving K1 to K4 given the
initial and end twiss parameters and the intervening
transfers.  Initially the quadrupole matrices will be taken
to represent thin lenses, avoiding the need to include
transcendental functions in the formulation.  Equations (1)
and (2) amount to a 4-dimensional algebraic system
which, if approached blindly, will soon lead to intractable
algebra.  A systematic algorithm ensuring clean, step-by-
step dimension reduction of the system is therefore
critical.  The technique developed in [1] was applied to
this problem, as briefly described in the next section.

2.2  Dimension Reduction of the System
The 4-lens system of (2) is first transformed into a 2-

lens system consisting of the 2 outer lenses, and a
“composite’ matrix representing the 2 middle lenses and
drift with generic matrix elements.  The transformed
system is subject to the matching condition (1) to obtain
formal solutions for the 2 outer lenses in terms of the
twiss parameters, the intervening optics, and the
composite matrix.  The remaining degrees of freedom of
the transformed system, together with the symplectic
condition, are used to obtain consistency conditions
between the 2 outer lenses and the composite matrix.  At
this point if the previous formal solutions of the 2 outer
lenses are substituted, and the composite matrix is
unfolded into its explicit dependencies on the 2 inner
lenses, we are left with a system which depends only on
the parameters of the 2 inner lenses.  In other words,
___________________________________________
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systematic decomposition of the constrained degrees of
freedom ensures that 2 variables can be cleanly eliminated
at each step of the reduction.  Since the path leading to
this 2-dimensional system is not unique, care must be
taken to ensure the most algebraically simple outcome at
every branch point.

2.3  Thin Lens and Semi-Thin Lens Solutions
The intervening matrices A, B, C, E, F and G in Eq. 2

can be general 2×2 matrices or pure drifts.  The former
leads to a 12th order polynomial system for the 2 inner
lenses, while the latter an 8th order system.  As will be
seen, the former can be used to obtain intermediate, or
semi-thin lens solutions important to exact thick lens
matching.

2.4  Numerical Solution
With the reduced algebraic system, some powerful

numerical algorithms can be called upon for efficient and
robust solutions.  The algorithm applied in the current
case is the Gröbner-basis based NSolve function available
in Mathematica 4.0 [2].  This algorithm is particular
powerful in its ability to obtain global roots to the
polynomial system.  This to a large extent eliminates the
need for input fine-tuning and ambiguity about existence
of real solutions typical of local root-finding algorithms.
In certain cases the absence of real global roots can be a
valuable indication of system defects or unreasonable
input parameters.  With rare exceptions where the system
may be pathologically conditioned, this function proves to
provide very stable global solutions for the 2-dimensional
problems, especially in the 8th order case.

Various linear combinations of the two 8th order
equations have also been constructed and found
complementary to the original equations when numerical
conditioning in the latter was less than ideal.

2.5  Conversion between Thin and Thick
Lenses

The algebraic system corresponding to arbitrary 2×2
intervening matrices in Section 2.3 can be used in a
special case where these matrices are formed by a drift
sandwiched between 2 half-thick-lenses, as indicated in
Figure 1.
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Figure 1: Intervening matrix formed by thick lenses.

The half-thick-lens matrices for the thick lenses G2 and
G3 are labeled MG2/2 and MG3/2. Their concatenation with
the drift matrix MD2 allows us to start with a thick lens
system, substitute the concatenated intervening matrices
into the algebraic system, and obtain thin lens solutions

satisfying the matching condition in addition to the initial
thick lenses.  These thin lenses are represented by the
dotted lines in Figure 1.  The solution thus obtained does
not correspond to reality, and the thin lens solutions must
be “absorbed” into the thick lenses.  This is done by
algebraically solving the transcendental equations
connecting the thin-thick-hybrid lens with a pure thick
lens up to the 5th order of small parameter expansion.  The
resulting formula can be used to convert between these 2
systems with very high accuracy.  Iteration can lead to
even higher accuracy but is often unnecessary.  This
method will be referred to as the semi-thin lens solution.

2.6  The 2-Stage Procedure
A very effective procedure for obtaining matching

solutions involves a 2-stage process where the pure thin
lens solution is obtained first.  Being a lower order
problem, this solution is often very robust and truly
global, with a possibility to select among all returned
roots the one with user-desired properties.  This solution
is “absorbed” into a thick lens system, followed by the
application of the semi-thin lens solution, which can be
iterated if necessary to produce the desired matching to
very high accuracy.

2.7  Numerical Tests
The algorithm was put through extensive simulated

numerical tests and found very effective.  In many cases
solutions global in nature, as suggested by their drastic
deviation from the initial quadrupole values, were found
to be more desirable solutions.  In most cases without
iteration the final pure thick lens solution satisfied all the
matching criteria to 10-3~-4 level.  In some cases the
algorithm failed to return roots in real number, suggesting
configuration flaw or erratic matching conditions.  In all
cases where real roots could not be found, the same input
parameters were tested on standard optics programs such
as DIMAD or Optim with no solutions found either.
More detailed study looking into zero-contours of the dual
polynomial systems indeed confirmed the absence of
intersection points in real numbers for such cases.  Thus
failures to obtain real solutions by the global algorithm
can direct attention to systematic problems with more
confidence than local algorithms.  It is however premature
to take the technique in its current state as a fail-safe
indicator for systematic problems, as poor numerical
conditioning can still obscure the calculation in a very
small number of cases.

3  IMPLEMENTATION OF THE
METHOD

3.1  Transport Matching at CEBAF
In the CEBAF accelerator proper where electron beam

passes through 2 linacs 5 times each via recirculation arcs,
the significance of long range betatron matching lies in
the containment of beam size against blowup and
tunability on the fixed target.  This is in contrast to typical
betatron matching where the beam phase space shape is



adjusted to match the design.  Thus the goal of betatron
matching in the CEBAF accelerator proper is to ensure
that the transfer matrix of each constituent section is
capable of delivering the design twiss parameters to the
next section, provided the design twiss parameters are
delivered from the previous section.  To adapt the
matching algorithm to such a task, transfer matrices of
each section have to be measured and translated into
target twiss parameters.  This is demonstrated in Figure 2.
The empirical transfer matrix is determined for the section
AC containing the matching quadrupoles, from which the
transfer between B and C can be inferred.  This is then
used to determine the target twiss parameters at the end of
the matching section, or equivalently, the matching
quadrupole changes needed to compensate for the
empirical error in the AC transfer.

3.2  Transfer Matrix Determination with
Symplectic Constraints

The transfer matrices between A and C in Figure 2 is
obtained through difference orbits performed routinely on
the machine consisting of orbit oscillations covering the
phase space in both planes.  A Lagrange-multiplier based
fitting algorithm was developed to obtain symplectically
constrained 2×2 matrices in both planes.  This constraint
is necessary because the matching algorithm satisfies the
constraints on α and β, with γ taken for granted due to
symplecticity.  A non-symplectic process results in target
α and β that, when matched, lead to incorrect γ.

The symplectic constraint is also seen to have
significant correcting effects on the fitted transfer
matrices where inadequate signal-to-noise ratio may
adversely bias the result.

3.3  On-Line Implementation and Test
The matching and transfer measurement algorithms

have been realized in a combined software package based
on C++ and mathematica.  A number of on-line tests were
performed in March 2000 on the CEBAF accelerator
proper.  The difference orbits were launched from the
beginning of the entire course of the 5-pass recirculation,

covering a distance of over 6 km.  Each orbit is subject to
trajectory fitting in regions with well-controlled optics,
and input to the transfer matrix calculation program,
which in turn generates empirical target twiss parameters
for the matching algorithm.  Thus in principle a single set
of difference orbits can be used to simultaneously match
all constituent sections.  The outcome of these tests can be
summarized as follows.

•  Using the combined RMS of fractional deviations
from target αx, βx, αy and βy as a measure of success,
we could achieve unambiguous, monotonic and sizable
reduction of this parameter at every iteration of the
process until it is overwhelmed by noise in
measurement and quadrupole setting.  Typically this
parameter starts at a level well over 100% and is
corrected after 2 to 3 iterations to a few percent.

•  Causes of failure, in some limited cases, by transfer
matrix measurements to produce usable input to the
matching algorithm have been identified as, in
decreasing order of importance, the loss of
orthogonality between difference orbits over long range,
uncorrected cross-plane coupling or dispersion, and
inadequate local model for trajectory fitting.  Remedies
or circumventing schemes have been identified and
under testing, with some proving effective in
preliminary trials.

4  FUTURE DIRECTIONS
The program will undergo the following developments

and extensions in the near future:

•  Algorithmic improvements: Various algorithmic
enhancements have been conceived to improve the
numerical robustness and efficiency of the method.

•  Software improvements: The final on-line application
will be made more maintainable.

•  Application to beam matching: The technique will be
applied to direct beam phase space matching in the
CEBAF Injector.  Without the complication of target
twiss translated from transfer matrix measurement, it is
expected that this application will be much more
straightforward and successful.
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Figure 2: Concept of Transfer Matching


